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Spatially growing mixing layers are simulated numerically using a two-dimensional 
vortex method. Special attention is paid to  the effect of double-frequency forcing on 
the development of a mixing layer. Two different types of forcing are considered: 
superposition of a fundamental frequency (F) on one of its subharmonics (Case I), 
and superposition of two frequencies of a resonance type, F+AF (Case 11). The 
effects of forcing amplitude and relative phase shift between the two forcing 
frequencies are also examined. Instantaneous plots of discrete vortices and various 
statistics up to the second-order moment are obtained to see the variation of 
coherent structures. Results show that the number of merging vortices and thus the 
growth of a mixing layer can be effectively controlled by double-frequency forcing if 
forcing frequencies, phase shifts and forcing amplitudes are suitably selected. 

1. Introduction 
Increasing attention has been given to forced mixing layers, because forcing may 

provide possible turbulence control. Experimental work has revealed that the 
growth of a mixing layer can be efficiently manipulated by imposing artificial 
disturbances on the flow. Zaman & Hussain (1980) imposed disturbances using sound 
from a loud speaker. The results showed that a reduction of turbulence intensity can 
occur under certain conditions of forcing. Ho & Huang (1982) imposed disturbances 
on a flow by controlling the flow rate. Their results showed that the number of 
merging vortices, and thus the spreading of a mixing layer, can be efficiently 
manipulated at low forcing frequencies, if the mixing layer is perturbed near a 
subharmonic of the response frequency. Oster & Wygnanski (1982) generated 
disturbances using a small vibrating flap installed downstream of the trailing edge of 
a splitter plate. They found that the growth of the mixing layer depends on both the 
amplitude and the frequency of the forced disturbances. Mehta et al. (1987) 
investigated the effect of initial periodic disturbances on a plane mixing layer. 
Disturbances are provided a t  the trailing edge of the splitter plate using an 
oscillating flap. They observcd that the mixing-layer growth is enhanced when 
forcing frequency (f) is half the fundamental frequency (F) of the unforced mixing 
layer, but suppressed when f is twice F .  All these experiments showed that the flow 
features of a mixing layer strongly depend on the forced disturbances. For a 
comprehensive review, readers are referred to Ho & Huerre (1984) and Wygnanski 
& Petersen (1987). 

The study of the effects of double-frequency forcing on a turbulent mixing layer 
is important. Ho & Huang (1982) observed that the location a t  which vortex merging 
occurs coincides with the location a t  which a subharmonic frequency attains a 
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maximum amplitude. Therefore, vortex merging may be intimately associated with 
the existence of two frequencies : a fundamental frequency and a subharmonic. On 
the other hand, Weisbrot & Wygnanski (1988) observed, in a highly excited mixing 
layer, that the first harmonic frequency is predominant in the region where the 
growth of a mixing layer is enhanced (Region I in Oster & Wygnanski 1982). The 
formation of a significant subharmonic frequency was not observed even in region I11 
where the growth of the mixing layer is resumed. Weisbrot & Wygnanski think that 
a resonance of the Kelly (1967) type may occur between the fundamental frequency 
and the first harmonic rather than between the fundamental and its subharmonic. 
Thus, it is not necessarily clear whether the presence of a subharmonic is a necessary 
condition for the vortex merging process (Wygnanski & Weisbrot 1988). 

The use of multiple-frequency forcing may have the possibility of drastically 
changing the flow structures, as suggested by Wygnanski & Petersen (1987). Hussain 
& Husain (1989) observed in their experimental study of a single-stream mixing layer 
that, when the mixing layer is forced by two frequencies (the fundamental frequency 
and its first subharmonic), the growth of a velocity fluctuation (r.m.s. u’) depends on 
the phase shift between the two frequencies. These observations also indicate the 
importance of the study of the effects of double-frequency forcing. 

A two-dimensional numerical approach to forced mixing layers is reasonable 
because two-dimensionally forced mixing layers which are produced experimentally 
become more two-dimensional than the unforced mixing layers (Oster & Wygnanski 
1982). Thus, two-dimensional computational work on forced mixing layers has been 
performed fairly extensively: for example, Riley & Metcalfe (1980) using a direct 
Navier-Stokes simulation of a time-developing flow, Mansour, Hussain & Buell 
(1988) using a direct Navier-Stokes simulation of a spatially growing flow, Inoue & 
Leonard (1987 a, b)  using a vortex simulation of spatially growing mixing layers, 
Jacobs & Pullin (1989) using a contour-dynamics simulation of a time-developing 
flow, and so on. 

Computational works on multiple-frequency forced mixing layers are not 
abundant. I n  most simulations except for Mansour et al. (1988) and Inoue (1989), 
spatial periodicity was assumed in order to  simplify the calculations, which consider 
a temporal evolution of the flow. Jacobs & Pullin (1989) found in their numerical 
simulation of time-developing flows that, when the fundamental frequency is 
combined with the first subharmonic frequency, the rolled-up vortices showed either 
pairing interaction or tearing interaction depending on whether the phase shift 
between the two frequencies is zero or i7t. A similar dependence of the nature of 
vortex interaction on the phase shift between the fundamental frequency and its f i s t  
subharmonic had been observed by Patnaik, Sherman & Corcos (1976) and by Riley 
& Metcalfe (1980). Wygnanski & Petersen (1987) claim that calculations based on the 
temporal evolution of the flow overemphasize the importance of the phase shift 
because temporal waves are non-dispersive. 

This study is an extension to  double-frequency forced cases of the work done by 
Inoue & Leonard (1987 a, b )  for single-frequency forced, spatially growing mixing 
layers. I n  vortex methods, convergence of a solution to an ultimate state as the 
number of vortices is increased is very difficult to show. It is not clear whether there 
even is convergence. However, Inoue & Leonard reproduced many of the flow 
features which have been observed experimentally. Statistics up to  the second-order 
moment showed excellent agreement with experiments. Therefore, the model and the 
method used by Inoue & Leonard are expected to give valuable information about 
the dynamics of forced mixing layers. One of the goals of this study is to increase our 
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understanding of the effects of multiple-frequency forcing on the development and 
structure of a mixing layer. For this purpose, we use the same flow model as that used 
in the study of single-frequency forced mixing layers. 

2. Mathematical formulation and numerical procedure 
2.1. Flow model and simulation parameters 

In Lagrangian simulations using the vortex method, unlike Eulerian simulations 
using the Navier-Stokes codes, the streamwise velocities of the two uniform flows, U, 
and U,, are not specified as boundary conditions at  y = k CQ. Instead, vortices 
existing in the computational domain determine U, and U, according to the Biot- 
Savart law. Therefore, the determination of the circulation of each discrete vortex 
and the use of a good flow model are important in the vortex method in order to 
create a flow field with the desired velocities U, and U,. In this study, we use the 
following flow model and method to determine the circulation, because this model 
has been shown to work very well in the study of single-frequency forced mixing 
layers. For details, readers are referred to Inoue & Leonard (1986, 1 9 8 7 ~ ) .  

First, an unbounded flow produced by an infinite row of discrete vortices with the 
same sign and the same strength which are moving along the x-axis with a constant 
velocity is considered. Let the circulation of each vortex be denoted by r, the fixed 
distance between the two neighbouring vortices by I ,  the constant velocity of 
translation of the row by U,, and the velocities of the upper and lower flows far from 
the x-axis, by U, and U,, respectively. Then the following relations are satisfied: 

r = AUI, AU = u, - u,, u, = +(u, + U J .  (1)  

Next, let us suppose that at an initial instant, t = 0, vortices on the right (x > 0) are 
suddenly removed. At all subsequent times the vortices on the left (x < 0) are 
assumed to move along the x-axis with the convection velocity U,. After reaching the 
origin ( x  = 0) ,  each vortex at  x > 0 is assumed to move under the influence of the 
potential field induced by individual vortices including the upstream ( x  < 0) 
vortices, in addition to the contribution of the convection velocity U,. Our main 
interest lies in the motion of the discrete vortices on the right-hand side. To simulate 
a flow produced in a wind tunnel, the effect of walls which bound the mixing layer 
at y = + L  is taken into consideration. The effect of the walls is approximated by two 
rows of image vortices (figure 1). These image vortices have the opposite sense of 
circulation and half the strength of the real vortices. This ensures that the total 
circulation of the flow field remains at zero. Strictly speaking, by this approximation 
the normal velocities on the walls do not satisfy the wall condition: the normal 
velocity I' on the walls was less than 1.6 YO of AU and the r.m.8. v' on the walls was 
less than 0.5 YO of AU. However, it has been confirmed that the simplified wall model 
adopted here produces no practical problems (Inoue & Leonard 1986, 1987a). The 
complex velocity potential, pI which governs the flow development for N vortices, is 
given by 

where z = x+iy, and the subscripts u and 1 denote the upper and lower image 
vortices, respectively. The velocity components u in the x-direction and v in the y -  
direction are given by 

(3) u - iv = af/az. 
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FIQURE 1. Schematic of flow model 

The time development of an individual vortex is determined from the relations 

As is well known, the numerical algorithm employed here requires evaluation of 
order N 2  terms per time step and therefore is time consuming for large N. To save 
computation time, we assume a test section in which reliable results are expected to  
be defined as 0 < x < xtest, and vortices far downstream (x 2 x,,, > xteSt) of the test 
section are deleted. This treatment ensures that the maximum number of discrete 
vortices in the computational domain is within a certain limit, and thus allows a 
calculation to be made for a period long enough that statistics can be measured. On 
the other hand, the deletion of vortices from the computational domain might cause 
the mixing layer to be perturbed and thus the desirable forcing described later in this 
section is polluted at the origin. Buell & Huerre (1988) found in their Navier-Stokes 
simulation of a spatially growing mixing layer that the exit boundary condition 
causes global potential fluctuations which interact with the inflow boundary and 
create small-amplitude noise at the inlet. As seen in the next section, however, the 
results in the present vortex simulation are not affected significantly by the feedback 
mechanism. The first-order Euler scheme is employed for time-integration. 

In  this simulation, as well as in the previous study, length- and timescales are 
arbitrary, because in a mixing layer there is no characteristic lengthscale. As will be 
seen in $3, however, statistic quantities are presented in conventional non- 
dimensional forms. The simulation parameters were prescribed as follows : 

L = 50, xtest = 250, x,,, = 500, 

time step : 6t = 0.1, 

convection velocity: U, = 3.2, 

velocity ratio: r ( = U,/U,) = 0.6. 

(5) 

It has been confirmed, by comparing flow features between the two cases of 6t = 0.1 
and 0.05, that  the time step 6t = 0.1 is sufficiently short. The distance between two 
neighbouring vortices upstream of the origin was prescribed to be 1 = U,St (=0.32). 
Therefore, one vortex is shed at each time step from the origin. With these values, 
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we obtain U, = 4.0, U, = 2.4, AU = 1.6 and r = 0.512 from equation (1).  In  actual 
computations, however, vortices far downstream are deleted from the computational 
domain, and hence the infinite sheet of vortices which set up the velocity jump does 
not exist : equation (1) does not hold. As mentioned before, in the vortex method 
U, and U,, and thus AU, are determined after computation has finished. Our flow 
model with the parameters described by (5) and also with r estimated by (1) 
gives 4.0 d U, d 4.02, 2.4 < U, < 2.41 and 1.59 < AU < 1.62 in the test section 
0 d x d 250. 

Forcing is applied such that each new discrete vortex appears at a position 

2 = 0, y = y,(t), (6) 
where yf is assumed to be a sinusoidal function of time. This flow situation may be 
realized by a vibrating flap at the end of a splitter plate. As our main interest lies in 
double-frequency forcing, yf(t) is assumed to be of the form 

(7) 
The parameters prescribed for forcing are as follows : 

y f  = A ,  sin (Znf, t )  +A2 sin (2nf2 t + B). 

forcing amplitude : 
amplitude ratio: 
phase angles: p = 0-n, 
forcing frequencies : 

A ,  = 0.5Uc St (fixed), 
a (  =A, /A, )  = 0.05, 0.2, 0.5, 1.0, 2.0 

Case I :  f, = F (fixed), f2 = LP, iF ,  +F, 
Case 11: f, = F+AF,  f, = F-AF,  AF = F / n  (n = 4, 6, 8). 

The forcing given by (6) and (7) with A ,  = 0.5Uc St is different from that in Inoue & 
Leonard (1987 a, b )  where, instead of y,, velocity disturbance wf was prescribed at the 
origin by the same sinusoidal form as (7)  with A ,  = 0.5U,. It has been confirmed, 
however, that the differences between calculated results are sufficiently small, and no 
qualitative flow features are altered at all between the two forcing methods. The 
fundamental frequency F was determined as follows. In  the experiments of Oster & 
Wygnanski (1982) the fundamental frequency F of the unforced mixing layer with 
r = 0.6 satisfied the following relation near the trailing edge of a splitter plate: 

Fe, x 0.02. 
Ul + u, (9) 

In our calculation U, + U2 = 2Uc = 6.4, and the momentum thickness et obtained 
near the start of linear growth of the unforced mixing layer is approximately equal 
to 0.4, as will be seen later in figure 3. Therefore, from the above relation (9), we 
prescribed the fundamental frequency as F x 0.32. 

The magnitude of forcing amplitude A ,  is selected to be 0.5UcSt because, in the 
previous study of a single-frequency forced mixing layer, with a value of A ,  2 
0.5Uc St the characteristic flow features such as the double-peaked profile of r.m.s. u’ 
and the negative Reynolds shear stress, both in region 11, were captured very clearly 
(see figure 14 in Inoue & Leonard 1987a). The relative magnitude of the present 
forcing amplitude to experiments or other computations may be estimated as 
follows. I n  the experiments of Ho & Huang (1982) the 1.111.5. forcing amplitude of 
velocity disturbances a t  the higher-speed side was less than O.OOIUc in most cases 
except for collective interaction which required an amplitude larger than O.02Ue. In  
the NavierStokes simulation of Mansour et aE. (1988), the forcing amplitude was 
0.005AU which was much larger than the amplitude of noise causes by the feedback 
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FIQURE 2. Flows at t = 200 when measurement of velocity fields were started. 
Case I : f=F+Lp,  /l =in. (a) 0 < z < zest( =250), ( b )  ztest < z < z,,, (=500). 
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mechanism from the exit boundary. I n  the present computation, the forcing 
amplitude of velocity disturbances may be estimated roughly as (dy,/dt),,, = 

2nf1 A ,  w nFU, St w O.lU, (=0.2AU). Therefore, the present forcing amplitude may 
be larger than those of Ho & Huang and Mansour et al. Oster & Wygnanski (1982) 
used a vibrating flap. I n  their experiments, f = 30-60 Hz, A ,  = 0-2.0 mm and AU = 
5.4 m/s when r = 0.6. Therefore, if we introduce a non-dimensional forcing amplitude 
A ,  which is defined as A ,  = A ,  f/AU, then A ,  is estimated to  be less than 2.2 x 
in Oster & Wygnanski. In the present computation, A ,  = 0.5UCSt = 0.16, f < F = 
0.32 and AU = 1.6, and therefore A ,  < 3.2 x lo-* which is comparable to the value of 
Oster & Wygnanski. 

At the initial stage of development, vortices leaving the origin roll up into 
concentrated swirls. These swirls are convected downstream with a velocity 
approximately equal to U,. After sufficient time, it appears that the state of the 
mixing layer in the test section is independent of the effect of the initial roll-up. In 
our calculation, the mixing layer was well developed in the test section, 0 < x < 250, 
by the time t = 200 when measurement of velocity fields were started. As an example 
of flow states a t  t = 200, figure 2 shows a flow for a double-frequency forced case 
when the fundamental frequency F is combined with a subharmonic ( fi = F ,  f2 = 
+F in Case I) .  Figure 2(a) is for the flow in the test section while figure 2 ( b )  is for the 
flow in the downstream region. We can see from figure 2 ( b )  that  most of the initial 
swirls have passed through the location x = xmax, and only a few remaining vortices 
of the initial swirls can be seen in the lower right-hand corner. I n  this simulation, as 
in the previous study of single-frequency forced cases, velocities are measured a t  
twelve x stations from 20 to 240, and 51 y points from - 20 to 20 at  each x-station. 
The mean flow quantities and statistics are obtained by averaging instantaneous 
values over the period 200 < t < 1400, which gives 12000 sampling data points for 
averaging purpose. A much longer calculation over 200 < t < 11 000 confirms that 
the shorter averaging time is enough to obtain accurate values of statistics up to the 
second-order such as the Reynolds shear stress -= (Inoue & Leonard 1986). 
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FIGURE 3. Momentum thickness distributions for unforced and double-frequency forced flows, r = 
0.6 . f=  0: 0,  unforced flow with x,, = 500; *, unforced flow with xma, = 650. f = F + Y ,  a = 1.0, 
/3 = in, A, forced flow with x,,, = 500; 0, forced flow with x,,, = 650. 

2.2. Preliminary tests 
A number of preliminary tests on the simulation parameters prescribed in the 
previous section had been performed to verify that the spatial and temporal 
discretizations are adequate, and they are summarized in Inoue & Leonard (1986). 
In this study, however, we made additional tests on x,,, in order to confirm that the 
flow features are not affected by x,,, and also by the feedback mechanism mentioned 
in the previous section. 

To test the effect of xmax, calculated flow features with the values 500 and 650 were 
compared. With x,,, = 650, the downstream region is 60% elongated from 250 < 
x < 500 to 250 < x < 650. Comparisons were made both for unforced and forced 
flows. A double-frequency forced flow in Case I with fi = F, fi = 1$,,8 = $r was 
selected as a sensitive test of a forced case because, as we will see later in 53.2.2, this 
flow is unstable to irregular disturbances and the vortex merging pattern is changed 
by the introduction of irregular disturbances from the simultaneous merging of 
vortices in sets of three to other patterns shown in figure 16. In other words, if 
feedback disturbances are strong enough, the simultaneous merging pattern of sets 
of three vortices should not appear. 

Momentum thickness distributions are presented in figure 3. (See equation (10) in 
$3.1 for the definition of the momentum thickness.) Velocity measurements for the 
case of x,, = 650 were made over 300 < t < 1500, because for this case the initial 
swirls have not passed through the downstream boundary x = x,,, by t = 200. As 
seen from figure 3, both for the unforced and double-frequency forced flows the 
differences of momentum thickness distributions between x,,, = 500 and 650 are 
negligibly small. Similar results are obtained for the other statistic quantities up to 
the second order. Instantaneous plots of discrete vortices for x,,, = 650 are 
presented in figure 4. As the characteristic features of these flows are discussed in 
detail in $3, here we just point out that there are no noticeable differences observed 
between x,,, = 500 and 650. In particular, we mention that the simultaneous 
merging pattern of every three vortices in the double-frequency forced flow (figure 
4b) appears in both cases (see figure 16b for x,,, = 500). From these results we may 
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FIGURE 4. Instantaneous plots of discrete vortices at t = 1500 : (a) unforced flow with x,,, = 650, 
( b )  double-frequency forced flow with xmax = 650. Case I :  f, = F ,  f, = 18, t9 = in, a = 1.0. 

say that the prescribed downstream distance, x,, = 500, is sufficient to analyse flow 
fields accurately, and the flow features calculated with x,,, = 500 are not affected 
significantly by the feedback mechanism mentioned in the previous section. 

3. Results and discussion 
3.1. Single-frequency forced jiows 

Before discussing the effect of double-frequency forcing, we briefly review the flow 
features of single-frequency forced mixing layers. 

A shear layer emanating from the origin rolls up to form discrete vortices. Each 
rolled-up vortex then merges with other vortices and become larger. This merging 
process (often called the vortex pairing process) repeats with increasing downstream 
distance. Without forcing, the merging process occurs randomly in time and space, 
and as a result a time-averaged unforced mixing layer shows linear growth with 
increasing downstream distance. The calculated distributions of momentum 
thickness in the case of single-frequency forced mixing layer are presented in figure 
5.  For comparison, the distribution of momentum thickness for the unforced flow is 
also presented in the figure. The momentum thickness 0 is defined as 

As seen clearly from the case off = @' in figure 5 ,  the growth of a single-frequency 
forced mixing layer is characterized by three distinct subregions (Wygnanski & 
Petersen 1987): two growth regions (regions I and I11 in Wygnanski & Petersen) 
separated by one saturation region (region 11). In  region I1 no vortex merging is 
observed, _. and the profile of r.m.s. u' is double-peaked, and the Reynolds shear stress, 
- u'v', becomes negative across the mixing layer, indicating the occurrence of contra- 
gradient diffusion. These characteristic features of statistics are in excellent 
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FIQURE 6. Effect of double-frequency forcing on momentum thickness. r = 0.6, a = 1.0. Case I. 
-0-, f = 0;  *, f = P +p, /3 = 0 ;  A, f = F+@, /3 = ; +, f = P+i3’, /3 = 0. 

agreements with the experimental observation by Oster & Wygnanski (Inoue & 
Leonard 1987a, 6 ) .  With decreasing forcing frequency, the length of region I 
increases ; only region I can be seen for the case off = iF in figure 5 .  With increasing 
forcing frequency, the length of region I decreases, and for sufficiently high forcing 
frequencies region I does not appear; the mixing layer starts with the saturation 
region as seen in the case off = 2F in figure 5.  

3.2. Double-frequency forced jlows (Case I )  
3.2.1. Effect of forcing frequency 

A mixing layer forced by two frequencies behaves quite differently. Distributions 
of momentum thickness are presented in figure 6 where the fundamental frequency 
F is combined with its subharmonics 13 (the first subharmonic), I$, and iF (the 
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second subharmonic), respectively. In  the figure, for simplicity, the expression f = 
fi + f, denotes the case y - A, sin (27rf1 t) + A ,  sin (27rf, t+P) .  As an example of 
double-frequency forced mixing layers presented in figure 6, an instantaneous plot of 
discrete vortices and a momentum thickness distribution for a case off = F+I$ are 
shown, respectively, in figures 7 and 8. For comparison, the corresponding 
distributions of single-frequency forced cases with f = F and are also shown in the 
figures. When the fundamental frequency is combined with a subharmonic frequency, 
the fundamental frequency dominates the roll-up process immediately downstream 
of the origin, and the momentum thickness in this region is close to that of a single- 
frequency forced flow with f = F .  This is clearly seen from figures 7 and 8, where both 
instantaneous plots of discrete vortices and momentum thickness distribution show 
that the roll-up process downstream of the origin (0 < x < 50) for the case f = F + A$ 
is close to that for f = F. The rolled-up vortices then tend to merge regularly and the 
momentum thickness downstream of the roll-up region increases (figure 6). The 
number of merging vortices in this region depends on the subharmonic frequency 
which is combined with the fundamental frequency; that is, sets of two vortices 
merge regularly when f = F +I$, sets of three when f = F + @', and sets of four when 
f = F++F. For an example of multiple-vortex merging, time developments of forced 
mixing layers when f = F -+ and F + iF are presented, respectively, in figures 9 and 
10. In  the figures, arrows indicate a merging process of a set of vortices. New vortices 

f .- 
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FIGURE 8. Effect of a subharmonic frequency combined with F on momentum thickness, 
r = 0.0. -0-, f = 0;  +, f = F ;  A, f = I$; +, f = F + v .  
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FIGURE 9. Merging of every three vortices. Case I :  f = F +I$, /3 = +n, a = 1.0. (a) t = 1400, 
( b )  t = 1418, (c) t = 1430. 
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FIQURE 10. Merging of every four vortices. Case I : f = F+:F, p = 0,  a = 1.0. (a) t = 1412, 
(6) t = 1430, (c) t = 1448. 

which are produced by multiple-vortex merging lead a saturation region where 
vortex merging is inhibited. As seen from figure 6, the thickness ratio before and after 
multiple vortex merging is about 2 for f = F +@', 3 for f = F+$F and 4 for f = 
F + i F ,  though a pretty large overshoot can be seen for f = F +p with /3 = in (see 
also figure 13 below). Downstream of the saturation region, the mixing layer recovers 
its growth. The calculated flow features discussed above are quite similar to  those 
observed experimentally by Ho & Huang (1982). Jacobs & Pullin (1989) observed in 
their contour-dynamics simulation of a time-developing shear layer that three 
vortices merge simultaneously when the fundamental frequency F is combined with 
a subharmonic LP. 

The effect on the Reynolds stresses of combining two frequencies is shown in 
figures 11 and 12 for f = F+l$. The velocities are made dimensionless by AU. The 
profiles of r.m.s. u' in figure 11 (a )  show three peaks at x = 140 where two merging 
vortices are nearly laterally aligned, in accordance with the observation in Mode I1 
of Ho & Huang, as shown in figure 1 1  ( 6 ) .  As in the cases - of single-frequency forced 
flows, the profiles of the Reynolds shear stress, -u'v', in figure 12 show the 
occurrence of contra-gradient diffusion in a region where the growth of the mixing 
layer is suppressed. The three-peaked profile of r.m.s. u' and the negative Reynolds 
shear stress are observed also for f = F + i$ and f = F -k iF.  
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( b )  Experimental result for Mode I1 by Ho BE Huang (1982). 
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FIQURE 12. Profiles of -auIvI. Case I : f = F + v ,  /3=  0, a =  1.0. 

3.2.2. Effect of phase shift 
The ranges over which the relative phase angle /3 varies are 7~ when f = F + &F, in 

when f = F+I$, and in when f = F++F. With these phase ranges in mind, the effect 
ofp  on the flow features is examined. The amplitude ratio a is fixed to be 1.0 in this 
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FIGURE 13. Effect of phase shift on momentum thickness. Case I :  ( a )  f =  F+F, 
( b )  f = F+P, ( c )  f = F + p. 
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FIGURE 14. Difference of the mixing-layer growth between the two modes whenf= F+!$ in Case 
I, r = 0.6, a = 1.0. (a )  Mode I (p  = iff), ( b )  Mode I1 (p  = 0 ) .  -0-, f =  0, I, f =  F ;  A, f = 13. 3 ,  + 
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f =  F+L$. 

section. Dependence of momentum thickness distributions on p is presented in figure 
13 for f = F+IP,  F+P, and F+iF.  From figure 13(a), we see that when f = F + p  
two different modes of mixing-layer growth exist. That is, when /3 is close to  inc, the 
mixing layer grows immediately downstream of the origin. We call this Mode I. On 
the other hand, when p is close to  0, the growth of the mixing layer is delayed. We 
call this Mode 11. The difference in the mixing-layer growth between Modes I and I1 
is clearly seen in figures 14 (a) and 14 ( b ) .  I n  the figures, the double-frequency forced 
case of f = F+@' is compared to the momentum thickness distributions of the 
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FIGURE 15. Effect of phase shift on vortex merging. Case I :  f = F+P, t = 1400. (a) /9 = Qn 
(Mode I), ( b )  /9 = in (Mode I), (c) ,8 = 0 (Mode 11). 
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unforced mixing layer and the single-frequency forced mixing layers with f = F and 
f = &$. In Mode I, the mixing layer grows immediately after the roll-up of vortices 
(40 < x < loo), and the momentum thickness distribution in this region is close to 
the single-frequency forced case with f = 13,  suggesting that the flow in this region 
is governed by the first subharmonic frequency. On the other hand, in Mode I1 
the growth of the mixing layer is suppressed after the roll-up of vortices (40 < x 
< 100) and is close to that of the single-frequency forced mixing layer with f = F, 
suggesting that the mixing layer is governed by the fundamental frequency in this 
region. Downstream of this region the mixing layer grows and the momentum 
thickness approaches the value of the single-frequency forced case with f= ijj. 
Instantaneous plots of discrete vortices for f = F +@' are shown in figure 15. The 
flows shown in figures 15(a) and 15(b)  are close to Mode I, while figure 15(c) is for 
Mode 11. As we can see, in Mode I merging of every two vortices occurs immediately 
after the roll-up of vortices, leading to the rapid growth of the mixing layer in this 
region. On the other hand, in Mode I1 vortex merging is delayed, leading the 
suppression of mixing-layer growth after the roll-up of vortices. Figure 13 (a) 
indicates that on increasing /3 from 0 to ;IT the flow pattern changes from Mode I1 to 
Mode I. The change from Mode 11 to Mode I is rapid and at  /3 = ~ T C  the flow is close 
to Mode I, as seen from figures 13(a) and 15(a). Thus, we may say that when the 
amplitude ratio a is equal to 1.0, Mode I1 appears in a narrow region of /3 around 0. 
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FIGURE 16. Effect of phase shift on vortex merging. Case I :  f =  F+l$, t = 1400. (a) /3 = in, 
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( b )  p = in, ( c )  /3 = in. 

(The effect of the amplitude ratio on the appearance of Modes I and I1 will be 
discussed in $3.2.3.) I n  both Modes I and 11, the momentum thickness ratio before 
and after merging of every two vortices is about 2, as seen from figures 13(a) and 14. 

Jacobs & Pullin (1989) observed in their numerical study of a time-developing 
shear layer that, when the fundamental frequency is combined with its first 
subharmonic, either vortex pairing or vortex tearing occurs depending on whether 
the phase shift is 0 or in. A similar dependence of the nature of vortex interaction had 
been observed by Patnaik et al. (1976) and Riley & Metcalfe (1980). Our results for 
a spatially growing mixing layer also show two patterns of vortex interaction and 
Mode I may correspond to the vortex pairing mode. However, Mode I1 does not 
necessarily correspond to the vortex tearing mode. As will be seen later in figure 23 
in $3.2.3, vortex tearing (or shredding) is observed over a narrow range of /3 around 
0 with a sufficiently large amplitude ratio. 

When f = F + I P ,  sets of three vortices merge regularly, as we noted before. 
Depending on p, three different patterns of vortex merging are observed. Figure 16 
shows instantaneous plots of discrete vortices for (a) /3 = in, ( b )  /3 = in, and (c) /3 = 
in. For (a), two vortices downstream merge first. Then this new vortex merges with 
a third upstream one. For ( b ) ,  three vortices merge simultaneously. For (c), two 
vortices upstream merge first. Then this new vortex merges with a third downstream 
one. Consistent with the dependency of the vortex merging pattern on p, figure 13 (b )  
shows that the momentum thickness distributions are also dependent on p. Among 
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FIGURE 17. Effect of phase shift on vortex merging. Case I:  f = F + i F ,  t = 1400, (a) /3 = in 
(Type A), ( b )  B = in (Type B), (c) B = in (Type C). 

the three patterns, simultaneous merging of three vortices is unstable to irregular 
disturbances. For example, when forcing was reset suddenly a t  a particular moment 
( t  = 200, actually), that is, when the forcing disturbances given by (7) are suddenly 
changed, while keeping the parameters A,,  A,, fi, f, and /3 unchanged, to those given 

(11) 
by 

yf = A ,  sin (2nf1 0 + A ,  sin (2nf2 t"+/3), 

where t" = t - t ,  and t ,  = 200, the subsequent vortex merging pattern of the mixing 
layer with B = in was changed from initial simultaneous merging shown in figure 
16(b) to the pattern shown in figure 16(a). (The other two patterns were stable to the 
irregular disturbances, and each pattern of vortex merging was unchanged.) 
Therefore, when f = F+P, simultaneous merging of three vortices may be observed 
only at certain times in actual flows, consistent with an experimental observation by 
Ho & Huang (1982) that in most tests of their mode I11 mixing layer two vortices 
merge first and the new vortex merges with a third one. The patterns of three vortices 
merging shown in figures 16 (a)  and 16 ( c )  have been also observed by Matsui & Okude 
(1983) in the wake of a circular cylinder which was forced by sound with a forcing 
frequency nearly equal to one-third of the fundamental frequency. Among the three 
patterns of vortex merging, Jacobs & Pullin (1989) observed simultaneous merging 
of three vortices only in their contour-dynamics simulation of a time-developing 
flow. 
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FIUIJRE 18. Merging of every four vortices when forcing was reset at t = 200. Case I :  f = F+aF, 
/3 = 0. (a) t = 1412, ( b )  t = 1430, (c) t = 1448. 

When f = F +iF, the relative phase range over which /3 varies is in. Depending on 
/3, vortex merging patterns change and we observed the following three patterns. 
Type A :  Among each set of four vortices, the inner two merge into a pair first. Then 
this pair merges with the third, most upstream vortex. Then, this new vortex merges 
with the fourth, most downstream vortex. Type B : the inner two merge first. Then, 
this new vortex merges with the other two simultaneously. Type C: as in Type A, 
but, this time the pair merges with the third, most downstream vortex, then this new 
vortex merges with the fourth, most upstream vortex. Typical examples are 
presented in figure 17. When /3 = Q x ,  both Types A and C appear though only Type 
A can be seen in figure 17(a). Irrespective of the Type, the merging of the vortex 
produced by first three vortices with the fourth one inhibited over 150 < x < 250, 
and as a result the growth of the mixing layer when ,!3 = is suppressed in this 
region, as seen from the momentum thickness distribution in figure 13(c). When 
/3 = in, Type B appears, as seen from figure 17 ( b ) .  When /3 = in, Type C appears, as 
shown in figure 17 ( c ) .  This pattern of vortex merging is observed also when /3 = 0 (see 
figure 10). The vortex merging pattern is not always stable. For example, when 
forcing was reset suddenly at  t = 200 in the same way as mentioned above (equation 
(1 l ) ) ,  the pattern of vortex merging when 1 = 0 changed from Type C shown in figure 
10 to a mixed pattern of Types A (4) and B (f), as seen in figure 18, though Type A 
was observed only at  times. 



Double-frequency forcing on spatially growing mixing layers 57 1 

I I 

I I 

T T  
-50 ! 

-50 I 
0 50 100 I50 200 250 

FIGURE 19. Two-stage merging of every four vortices in a triple-frequency forced mixing layer. 
f =  P+L$+iF. PI = $t, 8, = &. (a )  t = 1412, ( b )  t = 1424, (c) t = 1436. 

Ho & Huang (1982) observed, in their mode IV mixing layer where every four 
vortices merge, that  two vortices usually merge into a pair and two pairs then form 
a single structure. This pattern of two-stage vortex merging may lead an additional 
plateau (and thus three saturation regions) of momentum thickness (figure 26 in Ho 
& Huang). They also observed at times that four vortices merge simultaneously. 
These patterns of vortex merging were not observed in the present study. The 
pattern of two-stage vortex merging mentioned above is observed in a triple- 
frequency forced mixing layer with f = F + &$ +iF,  and for reference instantaneous 
plots of discrete vortices and momentum thickness distributions are shown in figures 
19 and 20 respectively (Inoue 1991). 

3.2.3. Effect of forcing amplitude 
The effect of forcing amplitude on flow structures is examined by varying the 

amplitude ratio a ( =A,/A,)  with a fixed value of A ,  ( =0.5Uc St). With a larger value 
of a, the effects of a subharmonic frequency become larger while with a smaller value 
of a, the effects of the fundamental frequency become larger. The effect of a on the 
momentum thickness distribution when f = F+I$ are presented in figure 21. Figure 
21 ( a )  is for /3 = ix ,  while figure 21 ( b )  is for /3 = 0. With a small value of a = 0.05, the 
mixing layer is in Mode I1 irrespective of /3, because the effect of the fundamental 
frequency F is prevailing in the region immediately after the roll-up of vortices. For 

I 9  FLM 234 
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FIQURE 20. Momentum thickness distributions for a triple-frequency forcing. f = F+LJ+$F, 
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FIQURE 21. Effect of amplitude ratio on momentum thickness distributions. f = F+F 
( u ) P = $ ~ ,  ( b ) p = O .  * , ~ = 2 ; - O - , a = l ;  A , ~ = 0 . 2 ;  O . a = 0 . 0 5 .  

p = in, in, in and an the streamwise location a t  which every two vortices start to 
merge regularly moves upstream with increasing a, and vortex merging pattern 
changes from Mode I1 at a = 0.05 to Mode I, as seen from figure 21 (a) and also from 
figure 22, where the dependence of the vortex merging pattern on a for p = in is 
presented as an example. On the other hand, when p is close to 0 the mixing layer 
stays in Mode I1 irrespective of a, as seen in figure 21(b). Instantaneous plots of 
vortices shown in figure 23 suggest that, when the amplitude ratio is sufficiently 
large, a larger vortex (indicated by .1 in figure 23) and a smaller vortex ( t)  appear 
alternately in the region where the vortex merging is inhibited (x < 100 in figure 23). 
This alternate appearance of larger and smaller vortices may be considered as 
evidence of vortex tearing (or shredding). Thus, our result indicates that vortex 
tearing occurs in a narrow region of p around zero with a sufficiently large amplitude 
ratio. 

The dependence of the momentum thickness distribution on a when f = F+1$ is 
presented in figure 24 for ,8 = 0 and in, for an example. When f = F+A$, with 
increasing a, the streamwise location at which every three vortices start to merge 
moves upstream, irrespective of p. The vortex merging patterns for P=+n are 
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FIGURE 22. Effect of amplitude ratio on vortex merging. f = F + p ,  /3 = &, t = 1400. 
( a )  u = 0.05, ( b )  u = 0.2, (c) u = 2. 
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presented in figure 25, as an example. When a is small, among the three patterns 
shown in figure 16 two patterns, but not the simultaneous vortex merging, are 
observed irrespective of p. With increasing a, the effect of the subharmonic frequency 
starts to prevail and one of the three patterns of vortex merging appears, depending 
on p. 

The effects of the amplitude ratio a on the momentum thickness distribution and 
on the vortex merging pattern when f = F + iF are similar to those when f = F + p. 
The streamwise station where every four vortices start to merge moves upstream 
with increasing a, irrespective of p. Instantaneous plots of discrete vortices for /3 = 
in are presented in figure 26 as an example. A new type of vortex merging pattern 
(Type D) was observed when a = 2.0 with = in. That is, among each four vortices, 
downstream three vortices merge simultaneously, first. Then, this new vortex merges 
with the fourth, most upstream vortex (see figure 26c). 

3.3. Double-frequency forced flows (Case II) 
Momentum thickness distributions for Case I1 are presented in figure 27 for AF = iF, 
+F and 18. In Case 11, as in Case I, the fundamental frequency dominates the roll-up 
process. The rolled-up vortices tend to merge regularly, but this time the number of 
merging vortices depends on AF, and for small values of A F  sets of m vortices merge 
when A F  = F/2m; that  is, every four vortices merge regularly when A F  = 18, every 

19-2 
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FIQURE 23. Vortex tearing mode in Mode 11. f =  I$+F, p = 0, a = 2.0. (a) t = 1412, 
(b )  t = 1424, (c) t = 1436. 
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FIGURE 24. Effect of amplitude ratio on momentum thickness distributions. f = F + p .  
(a) p = O ,  ( b )  p = $ ~ .  +, a = 2;  -0-, a = 1 ;  A, a = 0 . 2 ;  0, a=0 .05 .  

three vortices when A F  = iF.  Time developments of forced mixing layers when 
A F  = 1 8  and iF  are presented in figures 28 and 29, respectively. The mechanism of 
regular merging of sets of m vortices when AF = F / 2 m  may be explained by the 
nonlinear interaction of the two forcing frequencies ; that is, by combining 
fi ( =F + AF) and fi ( =F -AF), new frequencies 2F and 2AE' ( = F / m )  may be 
produced through the nonlinear interaction. Thus, the combination of the new 
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FIGURE 25. Effect of amplitude ratio on vortex merging. f = P + y ,  /3 = in, t = 1400. 
(a)  a = 0.05, ( b )  a = 0.2, (c) a = 2. 

frequency 2AF ( = F / m )  with the fundamental frequency F may lead the regular 
merging of m vortices in a manner similar to Case I where the forcing frequency is 
given by f = F + F / m .  

For the larger value of AF equal to iF ,  however, the number of merging vortices 
was not two. Instead, as seen in figure 30, two vortices merging and three vortices 
merging occur alternately, and these two new vortices then merge into a single 
structure ; thus eventually every five vortices merge. In figure 30, downward arrows 
indicate three vortices merging while upward arrows indicate two vortices merging. 
Though a t  present we have no definite explanation for the mechanism of five vortices 
merging when A F  = iF ,  the result seems to suggest that there is a further way to 
control the number of merging vortices and consequently the growth of a mixing 
layer. As seen from figure 27, rapid growth of a mixing layer produced by multiple- 
vortex merging is followed by a saturation region where vortex merging is inhibited. 

The dependence of momentum thickness distributions on the relative phase shift 
p in Case I1 is presented in figure 31 for AF = p, iF ,  and iF.  When A F  = iF,  every 
four vortices merge regularly as occurred for f = F + iF in Case I .  The phase range 
over which p varies may be in in this case, as for f = F + i F  in Case I. In  fact, the 
differences in the momentum thickness distributions among the four cases of p = 0, 

and 'IC were negligible. As seen from figure 31(a), the momentum thickness 
distribution depends on p. The effect of p on vortex merging is presented in figure 32. 
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FIQURE 26. Effect of amplitude ratio on vortex merging f = F +IF, /? = 4 ~ .  (a) a = 0.05, 
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( b )  a = 0.2, ( c )  a = 2. 
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FIGURE 27. Effect of double-frequency forcing on momentum thickness distributions. 
Case 11: /?= in, a = 1, r = 0.6. -0-, f =  0;  *, AF = IF;  A, AF =-@'; +, AF = &F. 
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FIGURE 28. Merging of every four vortices. Case 11: AF = A@', B = 0, a = 1. (a) t = 1412, 
( b )  t = 1424, (c) t = 1436. 

As was seen in figure 28, when /3 = 0, the vortex merging pattern is Type A defined 
in 53.2.2. When /3 = En, as seen from figure 32(c), the pattern is of Type B. When 
/3 = Qn and in, a new type was observed. That is, as seen from figures 32 (a )  and 32 ( b ) ,  
among the four vortices upstream, two merge into a pair first. Then this pair emerges 
with the third downstream vortex, and finally this new vortex merges with the 
fourth, most downstream vortex. We call Type E. By comparing with the case of 
/3 = in in figures 31 ( a )  and 32 ( a ) ,  we can see that when /3 = in the vortex merging is 
delayed and thus the growth of the mixing layer is suppressed in the region (z 2 100) 
after the initial merging of two upstream vortices. From these results, we may say 
that the effect of /3 is profound in this case A F  = $F as it was for f = F + i F  in Case 
I .  

When A F  = +F, as for f = F+I$ in Case I, every three vortices merge regularly. 
However, as seen from figure 31 ( b ) ,  the momentum thickness distributions in this 
case show no appreciable difference among all the values of /3 examined, in strong 
contrast to f = F + L$ in Case I (Figure 13b). The dependency on /3 of the appearance 
of the three different patterns of vortex merging found in Case I (figure 16) does not 
hold in Case I1 ; that is, the three patterns can be seen irrespective of p, as seen in 
figure 29. In accordance with the previous note in Case I, however, simultaneous 
merging of three vortices shown in figure 16(b) was observed only at times in Case 
11. 
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FIQURE 29. Merging of every three vortices. Case 11: AF = +F, /3 = +K, a = 1. (a)  t = 1406, 
( b )  t = 1418, (c) t = 1430. 
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In the case of AF = iF as well as AF = &F, no appreciable effect ofp on momentum 
thickness distributions (figure 31 c )  nor on vortex merging pattern was observed. 
Therefore, in this study had no effect only when A F  = iF and iF ,  both in Case 11. 
As noted in the introduction, Wygnanski & Petersen (1987) claim that calculations 
based on the temporal evolution of a shear flow overemphasize the importance of the 
initial phase shift because temporal waves are non-dispersive. Our calculation 
considers a spatially growing flow, and the above results partly support Wygnanski 
t Petersen. Further accumulation of data is necessary. 

4. Summary and concluding remarks 
The effects of double-frequency forcing on the growth of spatially growing mixing 

layers were examined using a two-dimensional vortex method. Forcing frequencies 
were prescribed in two different manners (Cases I and 11). The results for Case I 
showed that the number of merging vortices can be controlled by a combination of 
a fundamental frequency with its subharmonics ; sets of two vortices merge regularly 
when f = F+F, every three vortices merge when f = F+I$, and every four merge 
when f = F+iF.  It was also found that the phase shift between two forcing 
frequencies has a profound effect on the process of vortex merging and thus on the 
growth of a mixing layer. That is, when f = F +lJ the growth of a mixing layer was 
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FIQURE 30. Alternate merging of every two and every three vortices. Case 11: AF = i F ,  f i  = 0, 
a = 1 .  (a) t = 1412, (b )  t = 1424, (c) t = 1436. 
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FIGURE 31. Effect of phase shift on momentum thickness distributions. Case 11: a = 1. 
(a) AF = p, (b )  AF = p, (c) AF = p. 
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FIQURE 32. Effect of phase shift on vortex merging. Case 11: AF = LP, a = 1, t = 1400. 
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(a) p = 4% ( b )  p = in, ( c )  p = $. 

enhanced immediately downstream of the origin for all the values of p examined, 
except for #3 = 0 where it was delayed. When f = F + lg and also F + +F, different 
patterns of vortex merging were observed, depending on #3, and the momentum 
thickness distributions also varied. The effect of forcing amplitude was also found to  
be important. With a small value of amplitude ratio a, the effect of the fundamental 
frequency is larger and the growth of the mixing layer is suppressed in the region 
immediately after the roll-up of vortices. With increasing a, the effect of a 
subharmonic frequency becomes larger and the streamwise location a t  which 
multiple-vortex merging starts to occur moves upstream, in general, leading the 
rapid growth of the mixing layer. However, when f = IP+F with p close to 0, the 
mixing layer growth was not enhanced even with a sufficiently large value of a. I n  
this case, a larger vortex and a smaller vortex appeared alternately, indicating that 
the flow is in the vortex tearing (or shredding) mode. 

The results for Case I1 indicate that the number of merging vortices can also be 
controlled by prescribing the two frequencies such that fi = F + AF and fi = F -  AF, 
where AF was set equal to F l n  (n  = 4,6,8).  For small values of A F  (and thus large 
values of n) ,  it was found that sets of m vortices merge when n = 2m; that is, every 
three vortices merge when n = 6, and every four when n = 8. This relation has been 
confirmed to  hold at least up to n = 12, when every six vortices merge. For a larger 
value of A F  = i F ,  however, the above relation did not hold. Instead, two-vortex 
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merging and three-vortex merging occurred alternately, suggesting a further way to 
control the growth of a mixing layer. In Case I1 the effect of phase shift was observed 
only for A F  = I$: no appreciable effect of p was seen for AF = iF and iF. 
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